Tuning the electrical conductance of metalloporphyrin supramolecular wires
نویسندگان
چکیده
منابع مشابه
Tuning the electrical conductance of metalloporphyrin supramolecular wires
In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements c...
متن کاملTuning the electrical conductivity of nanotube-encapsulated metallocene wires.
We analyze a new family of carbon nanotube-based molecular wires, formed by encapsulating metallocene molecules inside the nanotubes. Our simulations, which are based on a combination of nonequilibrium Green function techniques and density functional theory, indicate that these wires can be engineered to exhibit desirable magnetotransport effects for use in spintronics devices. The proposed str...
متن کاملTuning Conductance in π-σ-π Single-Molecule Wires.
While the single-molecule conductance properties of π-conjugated and σ-conjugated systems have been well-studied, little is known regarding the conductance properties of mixed σ-π backbone wires and the factors that control their transport properties. Here we utilize a scanning tunneling microscope-based break-junction technique to study a series of molecular wires with π-σ-π backbone structure...
متن کاملConductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملConductance in quantum wires by three quantum dots arrays
A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep37352